A Hopefully Self-contained Introduction to Affine Planes

Andres Duarte

Contents

1	Introduction	1
2	Abstract affine plane	1
3	Affine plane from a field	3
4	Affine plane from a division ring	5
5	Moulton plane	7

Introduction

In this paper we define abstract affine planes, prove some theorems about them. and give three different models of affine planes: The classical affine plane, an affine plane from a division ring, and a Moulton plane.

Abstract affine plane

Suppose \mathcal{P} is a set of *points* and \mathcal{L} is a set of *lines*. If l and m are lines, then l is *parallel* to m, denoted $l \parallel m$, if and only if they are equal or disjoint.

$$l \parallel m \leftrightarrow l = m \text{ or } l \cap m = \varnothing$$

- $(\mathfrak{P},\mathcal{L})$ is an affine plane if and only if it satisfies the following axioms
- (A1) For any two distinct points p, q there is a unique line $\ell(p, q)$ that contains them.

$$\forall p,q \in \mathcal{P} \exists ! \ell(p,q) \in \mathcal{L} \quad p,q \in \ell(p,q)$$

(A2) For any line l and any point p, there is a unique line $\ell(p \parallel l)$ that contains p and is parallel to l.

$$\forall l \in \mathcal{L} \ \forall p \in \mathcal{P} \ \exists ! \ell(p \parallel l) \in \mathcal{L} \quad p \in \ell(p \parallel l) \text{ and } \ell(p \parallel l) \parallel l$$

(A3) There exists three points such that no line contains three of them.

$$\exists a, b, c \in \mathcal{P} \quad \nexists l \in \mathcal{L} \ a, b, c \in \mathcal{I}$$

Theorem 1. Any two lines in an affine plane are either parallel or their intersection is a singleton.

Proof. Suppose l_1 and l_2 are distinct lines in an affine plane and $|l_1 \cap l_2| > 1$. Then there exists $p, q \in l_1 \cap l_2$ distinct, a contradiction to the uniqueness of $\ell(p,q)$.

Theorem 2. Parallelism is an equivalence relation on the lines of the affine plane.

Proof. Parallelism is clearly reflexive and symmetric. To prove that it is transitive suppose l_1, l_2, l_3, l_4 are lines in an affine plane, $l_1 \parallel l_2$, and $l_2 \parallel l_3$

 $(l_1, l_2, l_3 \text{ not distinct})$ Immediatly $l_1 \parallel l_3$.

 $(l_1, l_2, l_3 \text{ distinct})$ Suppose for a contradiction that $l_1 \not\parallel l_3$. Then $\exists p \in \mathcal{P} \ l_1 \cap l_3 = \{p\}$, a contradiction to the uniqueness of $\ell(p \parallel l_2)$. Therefore $l_1 \parallel l_3$.

Lemma 3. For \sim an equivalence relation

$$A \sim B \not\sim C \to A \not\sim C$$

Proof. Assume $A \sim B \not\sim C$ and suppose for a contradiction $A \sim C$. By symmetry $B \sim A$. By transitivity $B \sim C$, a contradiction. Hence $A \not\sim C$.

Theorem 4. There is a bijection between any two lines in an affine plane.

Proof. Suppose l and l' are distinct lines in an affine plane. Then $\exists p \in l \ p \notin l'$ and $\exists p' \in l' \ p' \notin l$. Suppose $r \in l$. Then by construction

$$\ell(r \parallel \ell(p, p')) \parallel \ell(p, p') \not\parallel l'$$

Thus by Lemma 3 $\ell(r \parallel \ell(p, p')) \not\parallel l'$. Hence by theorem 1

$$\exists h \in \mathcal{P} \ \ell(r \parallel \ell(p, p')) \cap l' = \{h\}$$

For all $r \in l$ define f by $r \mapsto h$. Repeating the above argument interchanging l and l' gives you f^{-1} .

Affine plane from a field

Let ${\mathbb F}$ be a field and define the following

$$\begin{split} \langle m, b \rangle &:= \{ (x, mx + b) : x \in \mathbb{F} \} \\ \langle a \rangle &:= \{ (a, y) : y \in \mathbb{F} \} \\ \mathcal{L}_{\mathbb{F}} &:= \{ \langle m, b \rangle : m, b \in \mathbb{F} \} \cup \{ \langle a \rangle : a \in \mathbb{F} \} \end{split}$$

Then the classical affine plane of dimension 2, denoted $\mathbb{A}_{\mathbb{F}}^2,$ is

 $\mathbb{A}^2_{\mathbb{F}} := (\mathbb{F}^2, \mathcal{L}_{\mathbb{F}})$

Lemma 5. $\langle m, b \rangle || \langle n, c \rangle \leftrightarrow m = n$

Proof.

 (\rightarrow) We argue by contraposition. Suppose $m \neq n$, then

$$\begin{split} mx + b &= nx + c \leftrightarrow mx - nx = c - b \\ &\leftrightarrow x(m - n) = c - b \\ &\leftrightarrow x = \frac{c - b}{m - n} \\ &\rightarrow |\langle m, b \rangle \cap \langle n, c \rangle| = 1 \\ &\rightarrow \langle m, b \rangle \not| \langle n, c \rangle \end{split}$$

Hence, by contraposition $\langle m,b\rangle||\langle n,c\rangle\rightarrow m=n.$

 (\leftarrow)

 $\begin{array}{l} (b=c) \mbox{ Immediatly } \langle m,b\rangle = \langle n,c\rangle \\ (b\neq c) \mbox{ Suppose for a contradiction there exists } (x,y)\in \langle m,b\rangle\cap \langle n,c\rangle \mbox{, then} \end{array}$

$$y = mx + b$$
 and $y = nx + c \rightarrow mx - nx + b - c = 0$
 $\rightarrow x(m - n) + b - c = 0$
 $\rightarrow b = c$, a contradiction

Hence, $\langle m,b\rangle ||\langle n,c\rangle \leftrightarrow m=n$ as desired

Lemma 6. $\forall a, b \in \mathbb{F} \langle a \rangle \parallel \langle b \rangle$

Proof.

$$\begin{split} a &= b \rightarrow \langle a \rangle = \langle b \rangle \\ &\rightarrow \langle a \rangle \parallel \langle b \rangle \\ a &\neq b \rightarrow \langle a \rangle \cap \langle b \rangle = \varnothing \\ &\rightarrow \langle a \rangle \parallel \langle b \rangle \end{split}$$

4

Lemma 7 (A1). For any two distinct points $p, q \in \mathbb{F}^2$ there is a unique line $l \in \mathcal{L}_{\mathbb{F}}$ that contains them.

Proof. Consider $(x_0, y_0), (x_1, y_1) \in \mathbb{F}^2$ and the line

$$l := \left\{ \left(x, \frac{y_0 - y_1}{x_0 - x_1} x + \frac{x_0 y_1 - x_1 y_0}{x_0 - x_1} \right) : x \in \mathbb{F} \right\}$$

If $x_0 = x_1$, then $(x_0, y_0), (x_1, y_1) \in \{(x_0, y) : y \in \mathbb{F}\}$. If $x_0 \neq x_1$, then

$$mx_{0} + b = \frac{y_{0} - y_{1}}{x_{0} - x_{1}}x_{0} + \frac{x_{0}y_{1} - x_{1}y_{0}}{x_{0} - x_{1}}$$

$$= \frac{x_{0}y_{0} - x_{0}y_{1} + x_{0}y_{1} - x_{1}y_{0}}{x_{0} - x_{1}}$$

$$= \frac{x_{0} - x_{1}}{x_{0} - x_{1}}y_{0}$$

$$= y_{0}$$

$$\rightarrow (x_{0}, y_{0}) \in l$$

$$mx_{1} + b = \frac{y_{0} - y_{1}}{x_{0} - x_{1}}x_{1} + \frac{x_{0}y_{1} - x_{1}y_{0}}{x_{0} - x_{1}}$$

$$= \frac{x_{1}y_{0} - x_{1}y_{1} + x_{0}y_{1} - x_{1}y_{0}}{x_{0} - x_{1}}$$

$$= \frac{x_{0} - x_{1}}{x_{0} - x_{1}}y_{1}$$

$$= y_{1}$$

$$\rightarrow (x_{1}, y_{1}) \in l$$

Let $l' := \{(x, nx + c) : x \in \mathbb{F}\}$ and suppose $(x_0, y_0), (x_1, y_1) \in l'$, then

$$mx_0 + b = nx_0 + c \text{ and } mx_1 + b = nx_1 + c \to mx_0 - mx_1 = nx_0 - nx_1$$

$$\to m(x_0 - x_1) = n(x_0 - x_1)$$

$$\to m = n$$

$$\to mx_0 + b = mx_0 + c$$

$$\to b = c$$

$$\to l = l'$$

Lemma 8 (A2). For any line $l \in \mathcal{L}_{\mathbb{F}}$ and any point $(x_0, y_0) \in \mathbb{F}^2$, there is a unique line $l' \in \mathcal{L}_{\mathbb{F}}$ that contains p and is parallel to l.

Proof. Suppose $l = \langle m, b \rangle$, then $\langle m, y_0 - mx_0 \rangle$ contains (x_0, y_0) and is parallel to $\langle m, b \rangle$ by Lemma 5. Suppose $\langle m, b' \rangle$ also contains (x_0, y_0) , then

$$y_0 = mx_0 + y_0 - mx_0$$
 and $y_0 = mx_0 + b' \rightarrow y_0 - mx_0 = b'$
 $\rightarrow \langle m, b' \rangle = \langle m, y_0 - mx_0 \rangle$

Suppose instead $l = \langle a \rangle$. Then $\langle x_0 \rangle$ is parallel to $\langle a \rangle$ by Lemma 5 and contains (x_0, y_0) and is by construction the only such line.

Lemma 9 (A3). There exists three points $p, q, r \in \mathbb{F}^2$ such that no line $l \in \mathcal{L}_{\mathbb{F}}$ contains them.

Proof. Take p = (0,0), q = (0,1) and r = (1,0), then $\langle 0 \rangle$ is the unique line containing p and q. and $r \notin \langle 0 \rangle$. Hence no line can contain all three points. \Box

Theorem 10. $\mathbb{A}^2_{\mathbb{F}}$ is an affine plane.

Proof. Immediate from lemmas, 8, 9, and 10. $\hfill \square$

Affine plane from a division ring

If S is a set and + and \cdot are binary operations on S. Then $(S, +, \cdot)$ is a *ring* if it satisfies the following axioms

- (R1) (S, +) is an abelian group.
- (R2) (S, \cdot) is a monoid (multiplication is associate and there exists a multiplicative identity).
- (R3) multiplication distributes over addition.

 $(S, +, \cdot)$ is a *division ring* if and only if $(S, +, \cdot)$ is a ring and every nonzero element of S has a multiplicative inverse. Let $(K, +, \cdot)$ be a division ring and define

$$L_K := \{a + Kb : a, b \in K^2, b \neq 0\}$$

Lemma 11. Let $l_1 = a + Kb$ and $l_2 = c + Kd$, then

- 1. If b and d are linearly independent, then $l_1 \cap l_2$ is a singleton.
- If b and d are lineraly dependent, then l₁ || l₂. In particular, if p − a ∉ Kb, then l₁ ∩ l₂ = Ø. Otherwise l₁ = l₂.

Proof.

1. Suppose b and d are linearly independent. Then $\{b, d\}$ is a basis of K^2 and there exists unique $x, y \in K$ such that c - a = xb + yd

$$c - a = xb + yd \leftrightarrow a + xb = c - yd$$
$$\rightarrow l_1 \cap l_2 = \{a + xb\}$$

2. Suppose b and d are linearly dependent. Then there exists $x, y \in K$ not all zero such that xb + yd = 0. Without loss of generality assume that y is nonzero, then x must also be nonzero, because by construction b and d are nonzero and division rings don't have zero divisors. Then

$$l_{2} = c + kd$$

$$= c + K(-y)^{-1}xb$$

$$= c + Kb$$

$$c - a \notin Kb \rightarrow \forall t, u \in K \quad (t - u)b \neq c - a$$

$$a + tb \neq c + ub$$

$$\rightarrow l_{1} \cap l_{2} = \varnothing$$

$$c - a \in Kb \rightarrow \exists \delta \in K \quad c - a = \delta b$$

$$c = a + \delta b$$

$$\rightarrow l_{2} = a + \delta b + Kb$$

$$= a + Kb$$

$$= l_{1}$$

Corollary 11.1. For any $l_1, l_2 \in \mathcal{L}_K$ either $l_1 \parallel l_2$ or $l_1 \cap l_2$ is a singleton. Lemma 12 (A1). For any two distinct points $p, q \in K^2$ there is a unique line $l \in L_K$ that contains them.

Proof. Suppose $p, q \in K^2$ are distinct and l = p + K(q - p). Then

p=p+0(q-p) and $q=q+0(q-p)\rightarrow p,q\in l$

Suppose $\exists l' \in L_K \quad p,q \in l'$, then by Corollary 11.1 $l \parallel l'$ and in particular l = l'.

Lemma 13 (A2). For any line $l \in \mathcal{L}_K$ and any point $p \in K^2$ there is a unique line that contains p and is parallel to l.

Proof. Suppose $p \in K^2$, l = x + Ky, and l' = p + Ky. Then $l \parallel l'$ by Lemma 11. And p = p + 0y implies $p \in l'$.

Lemma 14 (A3). There exists three points $p,q,r \in K^2$ such that no line contains all three of them .

Proof. Suppose p = (0,0), q = (0,1), and r = (1,0). Then l = 0 + Kq is the unique line containing p and q.

Theorem 15. (K^2, \mathcal{L}_K) is an affine plane

Proof. Immediate from lemmas 12, 13, and 14. $\hfill \square$

Moulton plane

Define $\odot: \mathbb{R}^2 \to \mathbb{R}$ by

$$m \odot x \begin{cases} mx & \text{if } m \le 0 \text{ or } x \le 0 \\ 2mx & \text{otherwise} \end{cases}$$

and let

$$\mathcal{L}_M := \{\{(a, y) : y \in \mathbb{R}\} : a \in \mathbb{R}\} \cup \{\{(x, m \odot x + b) : x \in R\} : m, b \in \mathbb{R}\}$$

Then the Moulton plane is $(\mathbb{R}^2, \mathcal{L}_M)$.

Lemma 16 (A1). For any two distinct points $p, q \in \mathbb{R}^2$ there is a unique line $l \in \mathcal{L}_M$ that contains them.

Proof. Let $p = (x_0, y_0)$ and $q = (x_1, y_1)$ The only new cases are those where p and q lie on different sides of the y axis and $y_0 < y_1$.

$$y_0 = mx_0 + b \text{ and } y_1 = 2mx_1 + b \to y_0 - y_1 = mx_0 - 2mx_1$$
$$= m(x_0 - 2x_1)$$
$$m = \frac{y_0 - y_1}{x_0 - 2x_1}$$
$$\to b = y_0 - \frac{y_0 - y_1}{x_0 - 2x_1}x_0$$
$$\to p, q \in \{(x, \frac{y_0 - y_1}{x_0 - 2x_1} \circ x + y_0 - \frac{y_0 - y_1}{x_0 - 2x_1}x_0) : x \in \mathbb{R}\}$$

Lemma 17 (A2). For any line $l \in \mathcal{L}_M$ and any point $p \in \mathbb{R}^2$ there is a unique line that contains p and is parallel to l.

Proof. Suppose $l = \{(x, m \odot x + b) : x \in \mathbb{R}\}$, $p = (x_0, y_0)$, and

$$l' = \{ (x, m \odot x + y_0 - m \odot x_0) : x \in \mathbb{R} \}$$

Then $l' \parallel l$ and $p \in l'$. Suppose $l'' = \{(x, m \odot x + b') : x \in \mathbb{R}\}$, $l'' \parallel l$ and $p \in l''$. Then

 $y_0=m\odot x_0+y_0-m\odot x_0$ and $y_0=m\odot x_0+b'$

Lemma 18 (A3). There exists three points $p, q, r \in \mathbb{R}^2$ such that no line $l \in \mathcal{L}_M$ contains three of them.

<i>Proof.</i> The proof is equivalent to the proof of Lemma 9.	
Theorem 19. $(\mathbb{R}^2, \mathcal{L}_M)$ is an affine plane.	

Proof. Immediate from lemmas 16, 17, and 18. \Box

References

- [1] G. Eric Moorhouse. Incidence Geometry. University of Wyoming, 2007.
- [2] Oren Maximov. Affine and projective planes. Master's thesis, Wesleyan University, 2018.
- [3] Abraham Pascoe. Affine and projective planes. Master's thesis, Missouri State University, 2018.