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Introduction

In this paper we define abstract affine planes, prove some theorems about them.
and give three different models of affine planes: The classical affine plane, an
affine plane from a division ring, and a Moulton plane.

Abstract affine plane

Suppose P is a set of points and L is a set of lines. If l and m are lines, then l
is parallel to m, denoted l ‖ m, if and only if they are equal or disjoint.

l ‖ m↔ l = m or l ∩m = ∅

(P,L) is an affine plane if and only if it satifies the following axioms

(A1) For any two distinct points p, q there is a unique line `(p, q) that contains
them.

∀p, q ∈ P ∃!`(p, q) ∈ L p, q ∈ `(p, q)

(A2) For any line l and any point p, there is a unique line `(p ‖ l) that contains
p and is parallel to l.

∀l ∈ L ∀p ∈ P ∃!`(p ‖ l) ∈ L p ∈ `(p ‖ l) and `(p ‖ l) ‖ l
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(A3) There exists three points such that no line contains three of them.

∃a, b, c ∈ P @l ∈ L a, b, c ∈ l

Theorem 1. Any two lines in an affine plane are either parallel or their
intersection is a singleton.

Proof. Suppose l1 and l2 are distinct lines in an affine plane and |l1 ∩ l2| > 1.
Then there exists p, q ∈ l1 ∩ l2 distinct, a contradiction to the uniqueness of
`(p, q).

Theorem 2. Parallelism is an equivalence relation on the lines of the affine
plane.

Proof. Parallelism is clearly reflexive and symmetric. To prove that it is tran-
sitive suppose l1, l2, l3, l4 are lines in an affine plane, l1 ‖ l2, and l2 ‖ l3

(l1, l2, l3 not distinct) Immediatly l1 ‖ l3.

(l1, l2, l3 distinct) Suppose for a contradiction that l1 6 ‖ l3. Then ∃p ∈ P l1 ∩ l3 = {p}, a
contradiction to the uniqueness of `(p ‖ l2). Therefore l1 ‖ l3.

Lemma 3. For ∼ an equivalence relation

A ∼ B 6∼ C → A 6∼ C

Proof. Assume A ∼ B 6∼ C and suppose for a contradiction A ∼ C. By
symmetry B ∼ A. By transitivity B ∼ C, a contradiction. Hence A 6∼ C.

Theorem 4. There is a bijection between any two lines in an affine plane.

Proof. Suppose l and l′ are distinct lines in an affine plane. Then ∃p ∈ l p 6∈ l′
and ∃p′ ∈ l′ p′ 6∈ l. Suppose r ∈ l. Then by construction

`(r ‖ `(p, p′)) ‖ `(p, p′) 6 ‖ l′

Thus by Lemma 3 `(r ‖ `(p, p′)) 6 ‖ l′. Hence by theorem 1

∃h ∈ P `(r ‖ `(p, p′)) ∩ l′ = {h}

For all r ∈ l define f by r 7→ h. Repeating the above argument interchanging l
and l′ gives you f−1.
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Affine plane from a field

Let F be a field and define the following

〈m, b〉 := {(x,mx+ b) : x ∈ F}
〈a〉 := {(a, y) : y ∈ F}
LF := {〈m, b〉 : m, b ∈ F} ∪ {〈a〉 : a ∈ F}

Then the classical affine plane of dimension 2, denoted A2
F, is

A2
F := (F2,LF)

Lemma 5. 〈m, b〉||〈n, c〉 ↔ m = n

Proof.

(→) We argue by contraposition. Suppose m 6= n, then

mx+ b = nx+ c↔ mx− nx = c− b
↔ x(m− n) = c− b

↔ x =
c− b
m− n

→ |〈m, b〉 ∩ 〈n, c〉| = 1

→ 〈m, b〉 6 ‖ 〈n, c〉

Hence, by contraposition 〈m, b〉||〈n, c〉 → m = n.

(←)

(b = c) Immediatly 〈m, b〉 = 〈n, c〉
(b 6= c) Suppose for a contradiction there exists (x, y) ∈ 〈m, b〉 ∩ 〈n, c〉, then

y = mx+ b and y = nx+ c→ mx− nx+ b− c = 0

→ x(m− n) + b− c = 0

→ b = c, a contradiction �

Hence, 〈m, b〉||〈n, c〉 ↔ m = n as desired

Lemma 6. ∀a, b ∈ F 〈a〉 ‖ 〈b〉

Proof.

a = b→ 〈a〉 = 〈b〉
→ 〈a〉 ‖ 〈b〉

a 6= b→ 〈a〉 ∩ 〈b〉 = ∅
→ 〈a〉 ‖ 〈b〉
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Lemma 7 (A1). For any two distinct points p, q ∈ F2 there is a unique line
l ∈ LF that contains them.

Proof. Consider (x0, y0), (x1, y1) ∈ F2 and the line

l :=

{(
x,
y0 − y1
x0 − x1

x+
x0y1 − x1y0
x0 − x1

)
: x ∈ F

}
If x0 = x1, then (x0, y0), (x1, y1) ∈ {(x0, y) : y ∈ F}. If x0 6= x1, then

mx0 + b =
y0 − y1
x0 − x1

x0 +
x0y1 − x1y0
x0 − x1

=
x0y0 − x0y1 + x0y1 − x1y0

x0 − x1
=
x0 − x1
x0 − x1

y0

= y0

→ (x0, y0) ∈ l

mx1 + b =
y0 − y1
x0 − x1

x1 +
x0y1 − x1y0
x0 − x1

=
x1y0 − x1y1 + x0y1 − x1y0

x0 − x1
=
x0 − x1
x0 − x1

y1

= y1

→ (x1, y1) ∈ l

Let l′ := {(x, nx+ c) : x ∈ F} and suppose (x0, y0), (x1, y1) ∈ l′, then

mx0 + b = nx0 + c and mx1 + b = nx1 + c→ mx0 −mx1 = nx0 − nx1
→ m(x0 − x1) = n(x0 − x1)
→ m = n

→ mx0 + b = mx0 + c

→ b = c

→ l = l′

Lemma 8 (A2). For any line l ∈ LF and any point (x0, y0) ∈ F2, there is a
unique line l′ ∈ LF that contains p and is parallel to l.
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Proof. Suppose l = 〈m, b〉, then 〈m, y0−mx0〉 contains (x0, y0) and is parallel
to 〈m, b〉 by Lemma 5. Suppose 〈m, b′〉 also contains (x0, y0), then

y0 = mx0 + y0 −mx0 and y0 = mx0 + b′ → y0 −mx0 = b′

→ 〈m, b′〉 = 〈m, y0 −mx0〉

Suppose instead l = 〈a〉. Then 〈x0〉 is parallel to 〈a〉 by Lemma 5 and contains
(x0, y0) and is by construction the only such line.

Lemma 9 (A3). There exists three points p, q, r ∈ F2 such that no line
l ∈ LF contains them.

Proof. Take p = (0, 0), q = (0, 1) and r = (1, 0), then 〈0〉 is the unique line
containing p and q. and r 6∈ 〈0〉. Hence no line can contain all three points.

Theorem 10. A2
F is an affine plane.

Proof. Immediate from lemmas, 8, 9, and 10.

Affine plane from a division ring

If S is a set and + and · are binary operations on S. Then (S,+, ·) is a ring if
it satisfies the folowing axioms

(R1) (S,+) is an abelian group.

(R2) (S, ·) is a monoid (multiplication is associate and there exists a multiplica-
tive identity).

(R3) multiplication distributes over addition.

(S,+, ·) is a division ring if and only if (S,+, ·) is a ring and every nonzero
element of S has a multiplicative inverse. Let (K,+, ·) be a division ring and
define

LK := {a+Kb : a, b ∈ K2, b 6= 0}

Lemma 11. Let l1 = a+Kb and l2 = c+Kd, then

1. If b and d are linearly independent, then l1 ∩ l2 is a singleton.

2. If b and d are lineraly dependent, then l1 ‖ l2. In particular, if p−a 6∈
Kb, then l1 ∩ l2 = ∅. Otherwise l1 = l2.

Proof.

1. Suppose b and d are linearly independent. Then {b, d} is a basis of K2

and there exists unique x, y ∈ K such that c− a = xb+ yd

c− a = xb+ yd↔ a+ xb = c− yd
→ l1 ∩ l2 = {a+ xb}
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2. Suppose b and d are linearly dependent. Then there exists x, y ∈ K not
all zero such that xb + yd = 0. Without loss of generality assume that y
is nonzero, then x must also be nonzero, because by construction b and d
are nonzero and division rings don’t have zero divisors. Then

l2 = c+ kd

= c+K(−y)−1xb
= c+Kb

c− a 6∈ Kb→ ∀t, u ∈ K (t− u)b 6= c− a
a+ tb 6= c+ ub

→ l1 ∩ l2 = ∅

c− a ∈ Kb→ ∃δ ∈ K c− a = δb

c = a+ δb

→ l2 = a+ δb+Kb

= a+Kb

= l1

Corollary 11.1. For any l1, l2 ∈ LK either l1 ‖ l2 or l1 ∩ l2 is a singleton.

Lemma 12 (A1). For any two distinct points p, q ∈ K2 there is a unique
line l ∈ LK that contains them.

Proof. Suppose p, q ∈ K2 are distinct and l = p+K(q − p). Then

p = p+ 0(q − p) and q = q + 0(q − p)→ p, q ∈ l

Suppose ∃l′ ∈ LK p, q ∈ l′, then by Corollary 11.1 l ‖ l′ and in particular
l = l′.

Lemma 13 (A2). For any line l ∈ LK and any point p ∈ K2 there is a
unique line that contains p and is parallel to l.

Proof. Suppose p ∈ K2, l = x +Ky, and l′ = p +Ky. Then l ‖ l′ by Lemma
11. And p = p+ 0y implies p ∈ l′.

Lemma 14 (A3). There exists three points p, q, r ∈ K2 such that no line
contains all three of them .

Proof. Suppose p = (0, 0), q = (0, 1), and r = (1, 0). Then l = 0 + Kq is the
unique line containing p and q.

Theorem 15. (K2,LK) is an affine plane

Proof. Immediate from lemmas 12, 13, and 14.
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Moulton plane

Define � : R2 → R by

m� x

{
mx if m ≤ 0 or x ≤ 0

2mx otherwise

and let

LM := {{(a, y) : y ∈ R} : a ∈ R} ∪ {{(x,m� x+ b) : x ∈ R} : m, b ∈ R}

Then the Moulton plane is (R2,LM ).

Lemma 16 (A1). For any two distinct points p, q ∈ R2 there is a unique
line l ∈ LM that contains them.

Proof. Let p = (x0, y0) and q = (x1, y1) The only new cases are those where p
and q lie on different sides of the y axis and y0 < y1.

y0 = mx0 + b and y1 = 2mx1 + b→ y0 − y1 = mx0 − 2mx1

= m(x0 − 2x1)

m =
y0 − y1
x0 − 2x1

→ b = y0 −
y0 − y1
x0 − 2x1

x0

→ p, q ∈ {(x, y0 − y1
x0 − 2x1

◦ x+ y0 −
y0 − y1
x0 − 2x1

x0) : x ∈ R}

Lemma 17 (A2). For any line l ∈ LM and any point p ∈ R2 there is a
unique line that contains p and is parallel to l.

Proof. Suppose l = {(x,m� x+ b) : x ∈ R}, p = (x0, y0), and

l′ = {(x,m� x+ y0 −m� x0) : x ∈ R}

Then l′ ‖ l and p ∈ l′. Suppose l′′ = {(x,m� x+ b′) : x ∈ R}, l′′ ‖ l and p ∈ l′′.
Then

y0 = m� x0 + y0 −m� x0 and y0 = m� x0 + b′

→ m� x0 + y0 −m� x0 = m� x0 + b′

→ y0 −m� x0 = b′

→ l′ = l′′
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Lemma 18 (A3). There exists three points p, q, r ∈ R2 such that no line
l ∈ LM contains three of them.

Proof. The proof is equivalent to the proof of Lemma 9.

Theorem 19. (R2,LM ) is an affine plane.

Proof. Immediate from lemmas 16, 17, and 18.
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