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Introduction

In this paper we define abstract affine planes, prove some theorems about them.
and give three different models of affine planes: The classical affine plane, an
affine plane from a division ring, and a Moulton plane.

Abstract affine plane

Suppose P is a set of points and L is a set of lines. If [ and m are lines, then [

is parallel to m, denoted [ || m, if and only if they are equal or disjoint.
l|lmel=morlnm=go

(P, L) is an affine plane if and only if it satifies the following axioms

(A1) For any two distinct points p, ¢ there is a unique line ¢(p, ¢) that contains
them.
Vp,q € P 3U(p,q) € L p,q € l(p.q)

(A2) For any line [ and any point p, there is a unique line ¢(p || [) that contains
p and is parallel to [.

VieLVYpePIM(p|)el petlp|l)and p| 1) ]!



(A3) There exists three points such that no line contains three of them.

Ja,b,ceP PlelLabcel
Theorem 1. Any two lines in an affine plane are either parallel or their
intersection 1s a singleton.

Proof. Suppose [; and Iy are distinct lines in an affine plane and |l; N i3] > 1.
Then there exists p,q € [ N s distinct, a contradiction to the uniqueness of

t(p, q). O
Theorem 2. Parallelism is an equivalence relation on the lines of the affine
plane.

Proof. Parallelism is clearly reflexive and symmetric. To prove that it is tran-
sitive suppose l1,l2, 13,14 are lines in an affine plane, [; || I3, and I5 || I3

(l1,12,15 not distinct) Immediatly I || Is.

(l1,12,13 distinct) Suppose for a contradiction that iy J 3. Then I3p € P 1 Nls = {p}, a
contradiction to the uniqueness of ¢(p || I2). Therefore Iy || Is.

O

Lemma 3. For ~ an equivalence relation
A~BAC > AXC

Proof. Assume A ~ B # C and suppose for a contradiction A ~ C. By
symmetry B ~ A. By transitivity B ~ C, a contradiction. Hence A ¥ C. [

Theorem 4. There s a bijection between any two lines in an affine plane.

Proof. Suppose [ and [’ are distinct lines in an affine plane. Then dp el p & I’
and dp’ €I’ p’ € 1. Suppose r € [. Then by construction

|1 e(p p") |l €lp, ) ST
Thus by Lemma 3 ¢(r || £(p,p’)) Jf I'. Hence by theorem 1
Fhe® ir| Up,p)) N1 = {h}

For all r € [ define f by r — h. Repeating the above argument interchanging !
and !’ gives you f~'. O



Affine plane from a field

Let F be a field and define the following
(m, by := {(z,mz+b): z € F}
(a) :={(a,y) : y € F}
L :={(m,b) :m,beF}U{(a):a T}
Then the classical affine plane of dimension 2, denoted AZ, is
AZ = (F?, Ly)
Lemma 5. (m,b)|[{n,c) &> m=n
Proof.
(—) We argue by contraposition. Suppose m # n, then
mr+b=nr+cemr—nr=c—>
o x(m—n)=c—>
c—b
m-—n
= [{m,b) N {(n,c)] =1
— (m,b) [f (n,c)

T =

Hence, by contraposition (m, b)||(n,c) = m =n.
(<)
(b = ¢) Immediatly (m,b) = (n,c)
(b # ¢) Suppose for a contradiction there exists (z,y) € (m,b) N (n,c), then
y=mx+bandy=nr+c—-mr—nr+b—c=0
—z(m—n)+b—c=0

— b = ¢, a contradiction 4
Hence, (m,b)||(n,c) <> m = n as desired O
Lemma 6. Va,b e F (a) || (b)
Proof.
a="b— (a) = (b)
= (a) [| (b)
a#b—=(a)Nh) =2
= (a) || (b)
O



Lemma 7 (Al). For any two distinct points p,q € F? there is a unique line
l € Ly that contains them.

Proof. Consider (z¢,%0), (z1,y1) € F? and the line

l:{(:z:, yoylx+9€oy1$1yo> :xEF}
To — T1 o — T1

If g = x4, then (x0,v0), (x1,y1) € {(x0,y) : y € F}. If 2y # 21, then

Yo — Y1 " ToY1 — T1Yo

mxo+ b= o+

Lo — T1 Ty — T1

_ ToYo — ToY1 + ToY1 — T1Yo

ZTo — T1

o — T1

= Yo
ZTo — T1

= Yo

— (20,90) €1
Yo — Y1 - ToY1 — T1Yo

mx1 +b= 1+

Tro — 1 o — X1

_ T1Yo — T1Y1 + ToY1 — 1Yo

To — T1

To — T1
Zo — T1

=Y

= (w1,91) €1

Let I/ := {(w,nz +c) : = € F} and suppose (z0, yo), (21, 1) € I, then

mxo + b= nxg+ cand mzy +b=nx, +c— mryg — mxy = nNrg— NI
— m(zg — 1) = n(xg — x1)
—m=n
— mxg+b=mxg+c
—b=c

—i=1
O

Lemma 8 (A2). For any line | € Ly and any point (xq,yo) € F?, there is a
unique line I’ € Ly that contains p and s parallel to l.



Proof. Suppose I = (m,b), then (m, yo —ma) contains (zg, yo) and is parallel
to (m,b) by Lemma 5. Suppose (m,b’) also contains (xq,yo), then

Yo = Mo + yo — mxo and yg = mxo + b — yo — mxy = b
- <m7 b,> = <m7y0 - mx0>

Suppose instead [ = (a). Then (z() is parallel to (a) by Lemma 5 and contains
(z0,y0) and is by construction the only such line. O

Lemma 9 (A3). There exists three points p,q,r € F? such that no line
l € Ly contains them.

Proof. Take p = (0,0), ¢ = (0,1) and r = (1,0), then (0) is the unique line
containing p and ¢. and r ¢ (0). Hence no line can contain all three points. O

Theorem 10. AZ is an affine plane.

Proof. Immediate from lemmas, 8, 9, and 10. O

Affine plane from a division ring

If S is a set and + and - are binary operations on S. Then (S, +,-) is a ring if
it satisfies the folowing axioms

(R1) (S,+) is an abelian group.

(R2) (S,) is a monoid (multiplication is associate and there exists a multiplica-
tive identity).

(R3) multiplication distributes over addition.

(S,+,-) is a division ring if and only if (S,+,-) is a ring and every nonzero
element of S has a multiplicative inverse. Let (K, +,-) be a division ring and
define

Li:={a+Kb:abec K*b+#0}

Lemma 11. Letly = a+ Kb and Iy = ¢+ Kd, then
1. If b and d are linearly independent, then l1 Nly s a singleton.

2. Ifb and d are lineraly dependent, then ly || ly. In particular, if p—a &
Kb, then l; Ny = @. Otherunse |1 = 5.

Proof.

1. Suppose b and d are linearly independent. Then {b,d} is a basis of K2
and there exists unique z,y € K such that ¢ —a = a2b + yd

c—a=xb+yd<a+ab=c—yd
—>llﬂl2:{a+xb}



2. Suppose b and d are linearly dependent. Then there exists x,y € K not
all zero such that b + yd = 0. Without loss of generality assume that y
is nonzero, then x must also be nonzero, because by construction b and d
are nonzero and division rings don’t have zero divisors. Then

lo=c+kd
=c+ K(—y) 'ab
=c+ Kb

c—ag¢ Kb—-Vi,ue K (t—ub#c—a
a+th#c+ub
=L Nl=0

c—acKb—36eK c—a=56b

c=a-+0db
—la=a+ b+ Kb
=a+ Kb

:ll
O

Corollary 11.1. For any ly,ls € Lx either 1y || lo or 1y Ny is a singleton.

Lemma 12 (Al). For any two distinct points p,q € K? there 1s a unique
line | € Li that contains them.

Proof. Suppose p,q € K? are distinct and [ = p + K(q — p). Then

p=p+0(g—p)andg=q+0(q—p) = pqel
Suppose A’ € Lx p,q € ', then by Corollary 11.1 [ || I/ and in particular
I=1. O
Lemma 13 (A2). For any line | € Lk and any point p € K? there is a
unique line that contains p and s parallel to .
Proof. Suppose p € K?,1 =2+ Ky, and I’ = p+ Ky. Then [ || I’ by Lemma
11. And p = p + Oy implies p € I'. O
Lemma 14 (A3). There exists three points p,q,r € K? such that no line
contains all three of them .
Proof. Suppose p = (0,0),q = (0,1), and = (1,0). Then [ = 0+ Kgq is the
unique line containing p and q. O
Theorem 15. (K? L) s an affine plane
Proof. Immediate from lemmas 12, 13, and 14. U



Moulton plane
Define ® : R? — R by

{mx ifm<Qorxz<0
m ©

2max  otherwise
and let
Ly ={{(a,y):yeR}:aeR}U{{(z,mOx+b):ze€ R} :m,beR}
Then the Moulton plane is (R?, Ly).

Lemma 16 (Al). For any two distinct points p,q € R? there is a unique
line | € L) that contains them.

Proof. Let p = (x0,y0) and ¢ = (z1,y1) The only new cases are those where p
and q lie on different sides of the y axis and yy < y;.

Yo = mxo + b and y; = 2mx1 + b — yo — y1 = mag — 2may

=m(xg — 2x1)

_Y—n
Ty — 221
b=y — Yo— N 0
370—21,‘1
Yo — Y1 Yo — Y1
—p,q € {(x, ——— - ———uxg):v€R
p.g€{(z o 2z, OF w0 x072x1xo) z € R}

O

Lemma 17 (A2). For any line | € L) and any point p € R? there is a
unique line that contains p and is parallel to .

Proof. Suppose | = {(z,m®x +b) : x € R}, p = (20, yo0), and
'={(z;moOr+y—moex):z R}

Then !’ ||l and p € . Suppose I"” = {(z,mOz+¥V): xR}, 1" |l and p € l”.
Then
Y=mOTo+y —m®Oxyand yop =m O xg + b’

—“mQOTo+Y—MmOTo=mOzg+ b
— Yo —m O xg="b

U =1"



Lemma 18 (A3). There ezists three points p,q,r € R? such that no line
l € Ly contains three of them.

Proof. The proof is equivalent to the proof of Lemma 9. O
Theorem 19. (R%, L)) is an affine plane.

Proof. Immediate from lemmas 16, 17, and 18. O
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